Beyond the
Zachman framework:
Problem-oriented
system architecture

The year 2012 marks the twenty-fifth anniversary of “A framework
for information systems architecture,” written by John Zachman and
published in the IBM Systems Journal. The first part of this paper
reviews the Zachman and similar frameworks and concludes that
there are a number of limitations in the framework approach when
applied to today’s technology environment and business problems.
These include the inability of the problem owner to properly describe
a solution, the partitioning approach, and the decision-making
processes in the context of uncertainty and change. The second part
of this paper analyzes today’s problems and allocates them to one
of three classifications: tame, complex, and wicked, depending on
the degree of certainty and stability of knowledge and decisions

in both the problem and the solution domains. The final part outlines
an approach to problem-solving and architecture development
using techniques borrowed from cybernetics and control theory. It
proposes that partitioning should be determined by the nature of
the problem and potential solutions; that feedback loops should be
implemented in order to control the process; that the architect should
work across the business problem and solution spaces, and that
decisions should be related to business value.

B. Robertson-Dunn

Introduction

In 1987 the IBM Systems Journal published “A framework
for information systems architecture” by John Zachman [1].
This was the first attempt at developing a structured approach
to what has become known as enterprise architecture.
Structured analysis to underpin software had been developed
earlier, but John Zachman and others working at IBM on
large-scale technology problems recognized that there is
more to a system than just the software.

In this the twenty-fifth anniversary year of the publication
of the Zachman framework, it is worth examining the
changes in technology and systems that have occurred in
that period and assessing the usefulness of the Zachman
approach in light of current business problems, technologies,
and systems. The Zachman framework was, at the time, a
major step forward in understanding business information
systems and provided an analytic basis for subsequent system

Digital Object Identifier: 10.1147/JRD.2012.2205633

development. The idea of architectural frameworks has
been developed over intervening years and is now
considered an essential part of the architecture and system
development disciplines. The Zachman framework has
been extended [2], and a number of other frameworks
have been developed [3-5]. These have been reviewed
and compared elsewhere [6-8].

This paper examines the Zachman and other frameworks
in the context of decision-making in an environment of
uncertainty and assesses their suitability for use in today’s
technology and business environment. A more dynamic
and problem-oriented approach to architecture and system
development, referred to as a problem-oriented system
architecture (POSA), is proposed, one that leans heavily on
concepts and techniques from cybernetics and control theory.

The Zachman framework
The Zachman framework describes the structure of a
system architecture and processes for its development. This

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

B. ROBERTSON-DUNN 10:1

framework is used for organizing, creating, and managing
architectural assets to support the understanding and
development of business information systems. In developing
the framework, Zachman analyzed existing disciplines in
order to determine ways in which to create structure and
proposed his framework within which analysis and system
specification can be organized:

“In searching for an objective, independent basis
upon which to develop a framework for information
systems architecture, it seems only logical to look to
the field of classical architecture itself. In so doing, it is
possible to learn from the thousand or so years of
experience that have been accumulated in that field.
Definition of the deliverables, i.e., the work product, of
a classical architect can lead to the specification of
analogous information systems architectural products
and, in so doing, can help to classify our concepts and
specifications” [1].

This idea of learning from other disciplines is the first
of a number of themes John Zachman developed in his
framework.

The second is that a system will look different when
viewed from different viewpoints and when developing
architectural representations. The Zachman framework
arranges these architectural representations into a matrix of
perspectives and descriptions. Perspectives were defined in
the original paper as the owner, the designer, and the builder.
The descriptions specified were answers to the what, how,
and where questions. Later versions also included who,
when, and why.

The third theme is that “the architect’s drawings are a
transcription of the owner’s perceptual requirements” [1].
In other words, the role of the architect in populating
architecture assets is to work with the system owner, who
“has in mind a product that will serve some purpose” [1]
and who provides the requirements and makes decisions
regarding changing or adding to the set of requirements.

The technology available to developers of business
systems in 1987 was relatively limited. The user devices had
little variability—mostly block-mode 3270-style terminals
or personal computers before the days of graphical user
interfaces and widespread networking. The Internet had
not become ubiquitous, and technology was owned by
the enterprise that also owned the business processes.
Technology choices and hence decisions were limited,
network parameters were mostly about location.

At that time, the information and communications
technology (ICT) environment was relatively static. Initially,
the Zachman framework was applied to large mainframes,
which either came with or had limited choices as to databases
and programming languages. The technology was based
on architectures provided by a single vendor, so there was

10:2 B. ROBERTSON-DUNN

little opportunity to make technological or network decisions.
Many of the business systems were implemented as batch
processing.

Problems were internal to the business, and technology
solutions were for the most part used only by employees of
the business, to support that business. There was little or no
external electronic communications, systems were tightly
tied to predefined business processes, and most of the
information was highly structured.

Business processes did not change very quickly. As
Zachman said in “Zachman on the framework” [9],

“It is my opinion that if you define the primitives
relative to the Enterprise, they likely do not change
appreciably as long as you stay in the same business.”

In the years since 1987, other frameworks have been
developed. Some are enterprise architecture frameworks
[The Open Group Architecture Framework (TOGAF**),
Federal Enterprise Architecture Framework (FEAF)], and
others are aimed at system development (DoDAF). Details
of these frameworks are available elsewhere [3—5], along
with a number of comparisons [6—8].

Analysis of frameworks

Analysis and experience show that there are a number of
limitations in the framework approach to architecture and
system development today. These are outlined in the
following sections.

Problem formulation

In the framework approach, solving the problem is deemed
to be the responsibility of the business system owner.
Although the framework architect works with the system
owner, it is in order to identify solution requirements, not
to question whether the problem has been formulated or
solved appropriately.

Frameworks rely on the business system owner being able
to define the requirements of the solution. The assumptions
behind this technique are highly questionable. Edward
Yourdon, in Rise and Resurrection of the American
Programmer in 1997 [10], observed that it is not possible to
identify user requirements completely and accurately. Users
rarely know what they want and are even less able to
articulate it. Even if they can, the requirements are highly
likely to change during the conduct of the project. The only
things that have changed since Edward Yourdon made
these observations are that the business and technology
environments are far more complex, uncertain, and
changeable, the consequence being that it has become even
more difficult for users to solve their problems and then
identify and communicate requirements. This lesson has
not been learned by the architecture and system development
communities.

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

Partitioning

A feature of the framework approach is that the architecture
space for understanding the requirements and developing

a solution is partitioned. This is an aid to analysis and
specification of the solution; however, there are a number
of dangers.

There is no reason why partitioning in the problem
domain should be the same as that in the solution domain.
Different understandings are required and are for different
purposes. It is also possible that different parts of an
organization might require different types of partitioning.
An enterprise such as the Department of Defense has
a wide range of organizational units, each with significantly
different business problems and constraints on their
solutions.

Likewise, a service delivery area of government, with its
need for transaction-based systems, potentially has different
business problems from those of regulatory or policy
departments, which are mainly information-based. If the
optimal solution is a product from a vendor, then it is
possible that the architecture within that product is irrelevant
or could be incompatible with the partitioning developed
by the system architect. In addition, a services-oriented
architecture or cloud technology approach might cause
problems when related to a partitioning style imposed
by a rigid framework.

A further disadvantage of partitioning is that most
nonfunctional aspects of a system work across the whole
system. These aspects include security, performance,
availability, resilience, business continuity, and backup.
Some of these can be very difficult in a nonstop, distributed
system, and special attention must be paid to them in the
early phases of the system architecture development.

The Zachman framework explicitly excludes these issues,
and so do most of the other frameworks. Partitioning, and
allocating aspects of architecture and system development
to different teams based on this partitioning could result in
nonfunctional requirements not being met for the whole
system.

Roger Sessions, in “A Better Path to Enterprise
Architectures” [11], recognizes the problems of
partitioning in a sequential approach. Sessions proposes a
partitioned-iteration technique, which is based on dividing
the total system into smaller subsystems and building
each one in turn. This may work for some simple problems
and solutions; however, it is still based on requirements
not the problem. It does not address the weaknesses of
partitioning. It simply moves them to different phases of
the development, that is, to the implementation and
integration stages. There is a real danger that decisions
made during the development of one subsystem may not
be valid or appropriate for another subsystem, either at the
time they are made or at the time subsequent subsystems
are developed.

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

Decision-making, uncertainty, and change
The typical framework approach is to analyze the current
environment, develop a target architecture, and then initiate
projects to close the gap. This presupposes that a stable
long-term target architecture can be developed, in light of
knowledge gained during requirements analysis. It also
assumes that the target architecture will remain stable over
time and as the system development process proceeds.
These are dangerous assumptions.

Decision-making in the architecture and early system
development process usually occurs in an environment
of uncertainty and/or lack of knowledge. Most of the
frameworks assume that there is a sequential process of
requirement identification permitting more detailed
decisions to be made as the project progresses. However,
the sequential nature of the framework approach does not
easily accommodate uncertainty and change. Disturbances
in the environment and in the problem space are not
explicitly accommodated in any of the frameworks.

Consequential problems

The framework approach is solution-oriented. The
requirements are specified, and a solution is developed.
However, all solutions either change the problem space or
create problems of their own. By definition, a solution solves
a problem, which is an intended change in the problem space.
What is not recognized in the framework approach is that
any solution will create new, consequential problems. Some
might be serious enough to have an impact on the value

of solving the problem, whereas others might change the
nature of the problem. These problems are not identified as
part of the framework process and so are not resolved.

The value of architecture
In the framework approach, especially those concerned with
enterprise architecture, it is claimed that there are benefits
and advantages that accrue from developing an architecture.
However, these benefits may or may not have value to a
particular business. In order to assess a particular benefit, it is
necessary to identify whether it is of value to that enterprise.
A business operating in a highly competitive consumer
environment might value flexibility and time to market very
highly and a long-term roadmap far less so. A government
department may decide that, for it, the reverse is more
appropriate, because it is interested more in stability and
certainty than speed of system development. An organization
that has information systems that support a major sporting
event such as the Olympics sets high priorities for performance,
reliability, and availability, and these are probably only
for the duration of the event. It puts a lower value on
flexibility, maintainability, and other longer-term factors.

In general, an architecture initiative can best be justified to
the business not in terms of benefits, but in terms of the value
of the business problems it will solve or be instrumental

B. ROBERTSON-DUNN 10:3

in solving. Conversely, if an architecture initiative does not
solve at least one business problem, the question “What is the
value of applying resources to it?” needs to be asked. The
business value of a solution exists in the problem it solves.

Where are we now?

The limitations in the framework approach are compounded
by the nature of the technology available to businesses
today and the types of business problems to which
technology is now being applied.

Technology today

Technology has become pervasive and changes rapidly,
even at levels that can affect fundamental characteristics
of systems. Effective bandwidths and capabilities change,
sometimes in contradictory ways. For example, the spread
of small mobile devices has meant that the user’s viewable
area is restricted and network connectivity can be limited
and sometimes unreliable. These have a negative impact
on end-to-end system performance. At the same time,
wide-screen, high-definition television and high-speed
broadband Internet access have become widely available.
This has opened up the potential for a whole new range
of applications and business opportunities. The system
requirements for each of these situations are different but
may both need to be accommodated.

Systems today are characterized by a large number of
unknowns and uncertainties, a lack of control over many
of the users, and complex interactions with other systems.
Many applications involve the general public, whose
behavior can be unpredictable and who often have irrational
likes and dislikes. Technology is more complex. Systems
are more complex. Problems are becoming more difficult to
solve. There is more uncertainty, there are more complex
relationships, and generally change occurs more rapidly.

Business today

The environments in which organizations operate today are
often more uncertain, even hostile, as enterprises actively
compete with one another. Today’s businesses are tightly
integrated into a larger context. Communications external
to the enterprise are the norm. Most, if not all, large
businesses cannot exist without their information systems.
Changes in technology are driving major changes in the
business and business processes. They are enabling different
business models, changing the way existing businesses
operate, and introducing new types of business. Many
businesses have extensive presence on the Internet, and
many businesses exist only in virtual space.

New business models are being developed, both in terms
of what they do and how they do it. The publishing industry
provides a rich set of examples of change. Physical book
sellers have been affected by new technologies. Amazon now
sells books online. It has no customer-facing facility, only

10:4 B. ROBERTSON-DUNN

a warehouse and delivery capabilities; deliveries come in
bulk, and go out in smaller lots. In addition, many books
do not exist in physical form. They exist as e-books and
are read by users with a variety of electronic devices.

All of these changes and threats to the old book seller’s
business are the result of new and innovative information
systems. Information systems have changed the way the
old industry works while enabling a new industry with
little in common with the old business.

Problem-oriented system architecture

“Successful problem solving requires finding the right
solution to the right problem. We fail more often because
we solve the wrong problem than because we get the wrong
solution to the right problem” [12]. The problem-oriented
system architecture is an attempt to correct this failure
when applied to architecture and system development.

The nature of system architecture

I believe that the development of system architecture is a
technical art, not a methodology. Methods and frameworks
may help organize and communicate the thoughts and
decisions developed through the architecture process, but
they are neither necessary nor sufficient to achieve an optimal
outcome.

I believe that the system architecture discipline has not
kept pace with changes in technology and business over
the past 25 years. The techniques based on identification
of requirements, decomposition into independent areas, the
specification of static, target architectures, and sequential
development processes are not able to cope with rapid
change and tight relationships between business and
technology. There are whole classes of new business
problems that the framework approach cannot cope with.
The POSA outlined in this paper attempts to address the
limitations in the framework approach identified earlier.

Underpinning the POSA is the concept of an architect
being the bridge between a business problem and its solution.
The architect must be able to understand the problem and
assist in the development of potential solutions. It is unlikely
that the architect will know enough or have authority
unilaterally to make decisions in either domain. As such,
the role of the architect is that of a translator between
domains and a facilitator of decision making. The key role
of a POSA architect is to operate in multiple domains,
acting as a domain translator between the businesses problem
and the solution, and facilitator for problem solving. The
architect also needs to look outside the problem-solution
space in order to identify potential disturbances that may
affect the development project.

The problem-oriented system architecture approach
POSA learns and borrows from cybernetics and control
theory, disciplines that facilitate the understanding and

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

control of dynamic processes [13, 14]. Some work has
been done recently by Terry Hill of NASA to apply control
theory to project management [15]. The POSA is a similar
attempt to apply the control theory to architecture and system
development. It should be noted that most of NASA’s
problems are engineering centric and fall into the complex
class defined below. The problem is usually well defined,
but what is not clear is the nature of the solution and how
it is developed.

Much can also be learned from nonlinear, self-organizing,
complex, adaptive systems; however, such lessons are
beyond the scope of this article. This paper concentrates on
the use of proper partitioning, feedback, predictive control
systems, and optimization of outcome against potentially
changing objective functions. POSA treats architecture and
system development as a dynamic process that has as its
desired outcome a solution to a problem that, when solved,
is of value to the business. The solution may be implemented
as a strategy and/or architecture, within which further
development can occur, or as a specific system.

POSA is an iterative process of identify goal, formulate
problem, predict one or more solutions, measure solutions
against problem, measure problem against goal. The
iterations either stop or become less frequent when an
optimal solution has been selected and moves into
implementation. The iterations need to continue to ensure
that subsequent decisions do not change the solution or to
ensure that the goal or problem has not changed, requiring
modifications to the solution. The iterations move through
various phases, recognizing that the basis on which previous
decisions were made may change. At some point it might
be acceptable to assume that the problem has been identified
and remains constant. At another point, the assumption that
the requirements will remain stable and constant could be
safely made. In order to reduce risk, however, it is necessary to
check that these assumptions are valid. The architect needs to
control the POSA process, the system cannot control itself.

Classes of problems and solutions

The first task facing the architect is to determine the best
approach to solving a business problem. This requires
understanding the nature of, and relationship between, the
business goal, the business problem, and potential solutions.
I allocate the business problems facing enterprise and
system architects to one of three classes: tame, complex,
and wicked. The classes are defined according to the degree
of knowledge and certainty in the problem and solution
domains. This is not a new classification scheme, it was
developed by Nancy Roberts [16] in 2000 in the context
of problem solving in the public sector.

Tame problems—The characteristics of a tame problem
are that the problem is well understood and the solution
is well defined. The solution to a tame problem does not

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

significantly disturb the solution space. It must be possible
for the problem to be analyzed and understood and for

a set of criteria to be established in order to identify

and define when it is solved. In addition, when implemented,
the solution should not create additional problems that
diminish the value of solving the original problem.

A sequential methodology can be applied in the
development of a solution to a tame problem in the
knowledge that over time, progress can be made without
the need for re-work. Decomposition of the solution
development should be possible without the risk of
introducing unknown, critical, or unmanageable
dependencies.

Complex problems—The characteristics of a complex
problem are that the problem is well understood, but the
solution is unclear or uncertain. The solution itself will
probably have a significant impact on aspects of the
solution space. The problem can be analyzed and
understood and a set of criteria can be established in
order to identify and define when it is solved.

Although it is clear what the solution to a complex
problem must do and the criteria against which it is to be
measured are specified, it is not known what the solution
should be, how it can be implemented, and what the
consequences of implementing the solution will be. In
addition, there may be requirements of the solution to a
complex problem that are not derivable from analysis of
the problem but that arise because of the solution itself. This
is a common situation in information systems where solving
the problem requires particular application functionality.
However, the application needs to run in a technology
environment that supports nonfunctional requirements such
as availability and performance. The environment required
to support nonfunctional requirements both enables and
constrains application functionality. It also has key
relationships with other areas such as cost and ongoing
support and maintenance. Other examples include when
the solution needs to be integrated into an existing
environment, when new technology is being utilized, and
when the project team has not encountered this type of
problem or solution previously.

It may also be that although the problem criteria are clearly
stated, some of the requirements may be mutually exclusive.
One solution might be small, inexpensive, and quick to
implement, whereas another one might be large, complex,
expensive, and time consuming to implement; however,

a large, complex, inexpensive, and quick-to-implement
solution is unlikely to be achievable.

Wicked problems—The characteristics of a wicked
problem are that the problem is unclear, the solution is

B. ROBERTSON-DUNN 10:5

unclear, and the solution has an impact on the problem
itself. The solution significantly disturbs the problem space.

The term “wicked” problem was originally coined
by Horst Rittel [17] in the context of a general theory of
planning and was applied to problems that had a high
degree of social complexity.

A wicked problem is difficult to model and understand.
Entities and concepts can be difficult to define and their
relationships may be unclear or change radically as events
occur or over time. Selecting the best way to approach the
problem becomes a problem itself. A significant challenge in
trying to solve a wicked problem is that it is difficult to
confirm that a proposed solution will fully or adequately
solve a wicked problem. In addition, what compounds the
situation is that when a particular solution is considered or
implemented, the problem itself can change.

There are usually many consequences to implementing a
solution. Managing these consequences can lead to new
wicked problems. Sometimes the solution appears to be
simple, but the wickedness lies in the difficulty of
implementation. A wicked problem cannot be partitioned for
analysis, a problem cannot be disconnected from its potential
solutions, and the solution cannot be partitioned for
implementation without major risks to implementation
and nature of the problem.

In the context of information systems, it is useful to
assume that if there are a significant number or variety of
users and/or stakeholders, especially outside the direct
control of the business, then the behavior of those users may
change in ways that have an impact on the problem and
hence the solution options. This, alone, is sufficient to
make the problem wicked.

Classifying a specific problem

The classification of a problem into one of the three classes is

dependent not only on the problem itself, but also on the

skills, competencies, and experiences of the people solving

the problem. Incompetent or inexperienced practitioners can

turn what should be a tame problem into a wicked problem.
Every problem should be considered, at least initially,

as unique. Even though the problem and solution look the

same as others experienced in the past, there will always

be differences. The circumstances and context could be

different, and the team delivering the architecture and system

development is unlikely to be exactly the same; even if

it is the same team, it will be a new experience.

Applying principles of cybernetics and
control theory

Partitioning

A major feature of cybernetics and control theory is modeling
to understand problems and to develop solution options.

10:6 B. ROBERTSON-DUNN

Partitioning is a process by which different aspects of a
problem can be modeled from a variety of perspectives.
Understanding a complex or wicked problem cannot be
done by looking at its constituent parts. The consequences
of inter-relationships and emergent behaviors are only visible
when viewing the problem as a whole.

Cybernetics and control theory recognize that complexity
and wickedness arise because of their nonlinear
characteristics and that nonlinear systems cannot be
understood by simplifying, by partitioning, or by any other
mechanism without destroying the relationship between
the understanding and the reality of the problem. The concept
of “taming” a wicked problem is fatally flawed. Partitioning
a solution into subsystems may help system development,
but unless the solution is recombined and its behavior
measured as a whole, there is no guarantee that the total
system will work when finally implemented.

A system architecture is a set of partitioned models.
Control theory would suggest that the approach to
partitioning and modeling be tailored to meet the needs of
the problem and solution. Unlike the framework approach,
which predefines the models, POSA proposes that a degree
of analysis of the problem and potential solutions be
undertaken before decisions about partitioning and modeling
are made. This is because the modeling approach can
impose severe restrictions on subsequent phases of the
architecture and development processes. Different
partitioning and modeling approaches may be appropriate
for the problem domain and the solution domain.

It is advisable to first understand the relationships and
interdependencies that are created when partitioning a
particular problem and then manage the difficulties created
by this process. For example, a small user device imposes
restrictions on the user interface, which can have an
impact on the behavior of the application and the data
flows between the different components of the system.

This understanding of relationships should be the role of
the architect, empowered by the techniques of feedback
and comparisons.

Feedback
POSA makes significant use of the principle of negative
feedback. This is a technique that compares the input to a
process with the output of that process. Corrective action
is taken if there is a discrepancy. This is a very powerful
controlling technique and is used in many control systems.
By treating strategy, architecture, and development activities
as a dynamic process and applying feedback techniques
to that process, there is an increased likelihood that an
optimal outcome will be achieved.

In order to establish an effective feedback loop, there are
a number of issues that need to be addressed. In order to
properly connect the problem space with the architecture
and system development process, it is essential that the

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

problem itself be part of the feedback loop. The primary
reason being that, in the POSA, the problem is considered
a dependent variable. What actually matters is the goal that
the business is trying to achieve and the value derived
from the problem being solved. The problem is dependent on
the business goal. Bringing the problem into the feedback
loop has a number of effects. First, the business goals
associated with the problem are subject to analysis and
scrutiny. In other words, the problem itself is questioned
to ensure that its solution still achieves the business

goals. Second, the behavior of the predicted solution is
compared with the problem, not the requirements. This
means that external disturbances, consequential problems,
and uncertainty and change will automatically be
addressed as part of the process. If the predicted solution
does not solve the problem and solving the problem does
not meet the goals, some form of corrective action will

be taken.

Simple problems do not need advanced feedback; the
process can be considered an open loop, with a degree of
project monitoring. Feedback in the case of complex and
wicked problems needs to be more advanced. The difference
between a complex and a wicked problem lies in certainties
and relationships in the problem space. The feedback
loop around a wicked problem needs to have strong links
to all the stakeholders in both the problem and the solution
space. A complex problem probably has fewer stakeholders
in the problem domain.

The problem-solving and solution development process
gradually increases its scope as a project advances.
Initially, it generates solutions options; the feedback
process converges on a preferred, predicted solution that
is followed by design and construction. The feedback
process continues to operate, concentrating on ensuring
that subsequent decision making continues to lead to a
solution that solves the problem.

Comparisons

It is a fundament tenet of control theory that if something
cannot be measured, it cannot be controlled. Measurement
can take one of two forms, counting or comparison. In the
context of system architecture, what needs to be measured
is the solution with respect to the problem that needs to be
solved. In a project that is based upon the framework
approach, measurements are usually only of the counting
type, those of time and cost. If the solution is ever measured,
it is usually compared with requirements, not with the
business goals or the problem that needs solving.

However, in architecture and system development,
measurements and comparisons are not easy. In industrial
control systems, the output can usually be compared in
some direct way with the input signal. In the case of
architecture and system development, the output at any one
time is not the intended solution but a representation of

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

the solution. In fact any architecture or design artifact is best
considered to be a prediction or estimate.

Unfortunately, a predicted solution cannot be directly
compared with a problem. The problem and its solution are
different things. It is necessary, therefore, to translate from
the solution domain back into the problem domain. Part
of this translation back into the problem domain should
include a recombination of the components that have been
introduced because of partitioning into a complete system.
Another is to identify the behavior of the predicted solution.
These activities are defined as “domain translation” and
are a major role of the architect. All these concepts are
integrated into the POSA, which is shown in Figure 1.

Case studies

In 2008, Sir Peter Gershon conducted a review of Australian
Government Information and Communication Technology
(ICT) [18]. As part of that review, he recommended that
the Australian Government Information Office (AGIMO)
develop a whole government data center strategy and
predicted that costs of about SAUDI billion over a period of
15 years could be avoided. Subsequently, AGIMO initiated
a project to develop a data center strategy. I joined the
project team in July 2009 as lead IT architect

and strategist.

It was determined that the goal of cost avoidance of
$AUDI billion over 15 years could best be achieved by
answering the question “What can AGIMO do, at the whole
of government level, that agencies cannot do themselves?”
This statement became the problem to be addressed by
the strategy.

The problem was identified very early on as a wicked
problem. There were multiple stakeholders who were likely
to exhibit unpredictable behaviors. Most of the government
agency stakeholders had different objectives and concerns
from those of AGIMO, a central agency. Knowing whether
a particular solution would solve the problem was also
uncertain. The scope of the problem included all of the
federal government’s data centers and the systems they
hosted. This strategy phase addressed the structure and
relationships of the complete set of data centers. Subsequent
phases addressed issues of the systems within data centers.

Over time, all the principles of the POSA were applied
to the strategy development. After an initial analysis, the
problem was partitioned into data center demand from
government agencies, data center supply, data center
technology, and potential solutions. The solution space
included procurement issues, migration of agency systems,
and a range of potential technical and commercial initiatives.

A decision-making forum was created comprising
representatives from various agencies who could assign
business value to the various aspects of the problem being
solved. My role as enterprise architect was to lead the
development of potential architectures and solutions, identify

B. ROBERTSON-DUNN 10:7

Business domain

Business drivers, constraints, disturbances

Error detecting,

decision-making Conseqieiie

Development domain Solution domain

Solution drivers, constraints,
disturbances

\ problems
process N

Business
goal

Predicted solution
translated into the problem

Architecture >

Solution
development

A 4

A

domain for comparison to
problem

Architecture domain

]
]
]
]
1
1
1
1
1
1
1
]
)
1
)
1
1
. 1
Solution !
1
)
)
)
)
)
)
)
1
)
1
1
1
1
1
1
1

The problem-oriented system architecture.

consequential problems, analyze the solutions, and translate
them into forms that facilitated comparisons against each
other and against the problem.

One of the difficulties the project team faced was in
measuring the existing data center environment and its key
characteristics. This was recognized during the strategy
development and became a significant component of the final
strategy. Over time, agencies will be required to report on
an increasingly more comprehensive set of parameters.

The strategy was accepted by the Australian Government
on March 22, 2010 [19], and a project was initiated to
implement the strategy. The initial achievements were
focused on coordinated procurement of data center facilities
and data center migration capabilities [20]. In July 2011,
AGIMO commenced the implementation of another phase
of the strategy that is aimed at optimizing the technology
that is housed in government data centers [21]. I am currently
the lead IT architect on this project, which will, in part,
achieve its goals through standardizing and consolidating
ICT services by use of cloud services and associated
technologies.

This development phase of the strategy was structured
differently from the strategy itself; however, it also follows
the approach of the POSA. My role in this phase is ongoing
and is similar to that of the strategy development. The
partitioning in this phase is driven by the need to comply
with government procurement rules while also promoting
competition in the Australian ICT marketplace and assisting

10:8 B. ROBERTSON-DUNN

government agencies to achieve value for money in the
shortest time possible. The domain translation aspect is much
more closely allied to technology and architecture than in
the strategy development.

It should be noted that many of the activities undertaken in
these projects were no different from those using any other
approach. What was different from a requirements-driven
approach was the role of the architect, supported by the
structure of the project, the nature of the feedback, and the
high priority given to understanding the problem, all of
which are fundamental aspects of the POSA.

Conclusion

This paper has described an approach that integrates
problem-solving and solution development such that the
whole process is explicitly aimed at the business and the
problems that need to be addressed. Architecture and
system development disciplines have not kept pace with
the range of problems facing businesses and government
today. Technology is more complex and capabilities change
at a far more rapid pace than in the past. The relationships
between business, business systems, and technology are
more pervasive than ever.

Business problem owners generally do not have the
training, skills, or experience in solving complex or wicked
problems. Their perceptions of solutions, as specified through
requirements, only partially describe a solution and how
it is to be assessed. They do not describe their problem; at

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

best, they describe symptoms. User-specified requirements
are an unreliable place to start when developing today’s
business systems.

This approach has been termed problem-oriented
system architecture because it moves away from the
requirements/solution approach embedded in traditional
frameworks to a wider scope of business value, business
problems, solutions, and the problems that arise when
implementing these solutions.

The problem-oriented approach is not directed at any
particular architecture domain, such as system architecture
or enterprise architecture. The POSA is fundamentally a
problem-solving process underpinned by control theory, one
that can be adopted for all types and scopes of business
problems and architecture development.

The concepts and ideas of a POSA presented in this
paper need to be more fully developed into a wider body
of work such that more complex and wicked problems are
better solved. It should result in a better track record of the
IT industry in delivering large-scale system projects to
business and government.

Acknowledgments

I thank the Australian Government Information Management
Office for allowing the use of the data center strategy as a
case study in this paper. I also acknowledge the help and
assistance given by David Oram (a former IBM Systems
Engineer) who was the Project Director for the development
of the strategy and who also provided highly valuable
comments and critiques during the preparation of this paper.

**Trademark, service mark, or registered trademark of X/Open
Company Limited in the United States, other countries, or both.

References

1. J. A. Zachman, “A framework for information systems
architecture,” IBM Syst. J., vol. 26, no. 3, pp. 276-292, 1987.

2. J. F. Sowa and J. A. Zachman, “Extending and formalizing the
framework for information systems architecture,” /BM Syst. J.,
vol. 31, no. 3, pp. 590-616, 1992.

3. TOGAF, Introduction, 2009. [Online]. Available: http://www.
togaf.info/togaf9/chap01.html

4. The DoDAF Architecture Framework, version 2.02. [Online].
Available: http://www.eng.auburn.edu/~hamilton/security/
DODAF/DoDAF_v2-02_web.pdf

5. A Practical Guide to Federal Enterprise Architecture by the CIO
Council, version 1.0. [Online]. Available: www.gao.gov/
bestpractices/bpeaguide.pdf

6. R. Sessions, Comparison of the Top Four Enterprise Architecture
Methodologies. [Online]. Available: http://www.objectwatch.com/
white_papers.htm#4EA

7. J. Schekkerman, 4 Comparative Survey of Enterprise Architecture
Frameworks. [Online]. Available: https://docs.google.com/
viewer?a=v&qg=cache:aTRsMBNMY WwJ:www.
enterprise-architecture.info/Images/Documents/Comparative
Survey of EA Frameworks.pps+A+Comparative+Survey+oft
Enterprise+Architecture+Frameworks&hl=en&gl=us&pid=
bl&srcid=ADGEESiK3JhwjsUebmmPAmqgkrBKozBr
XABG6ics7v27UpIX6ZpSL7eXLI4 t4wdBKHdsZDvAi6Cos
dsaYh5NvIZTjEKg6RqIWOJujzZLk1OP2GwkdDYk 1 XH2tk

IBM J. RES. & DEV. VOL. 56 NO. 5 PAPER 10 SEPTEMBER/OCTOBER 2012

1FCNyla4F47u-WiOUY &sig=AHIEtbRecl0G7GZegDZutAb
QK7tcKglIxjA

8. S. R. Susarapu and E. White Baker, “Analyzing enterprise
architecture integration at the DHS using the Zachman
framework,” in Proc. Southern Assoc. Inf. Syst. Conf., Atlantic
Beach, FL, 2007, vol. 10, pp. 172—177. [Online]. Available: http://
sais.aisnet.org/2007/SAIS07-40 Susarapu-Baker.pdf

9. J. A. Zachman, Zachman on the Framework. [Online]. Available:
http://xpertaml.com/backup/ABS Development (Martin)/
Methodologies/ZIFA/ZIFA09.pdf

10. E. Yourdon, Rise & Resurrection of the American Programmer,
Englewood Cliffs, NJ: Yourdon Press, 1997.

11. R. Sessions, A Better Path to Enterprise Architectures. [Online].
Available: http://www.objectwatch.com/whitepapers/
ABetterPath-Final.pdf

12. R. L. Ackoff, Redesigning the Future: A Systems Approach to
Societal Problems. New York: Wiley, 1974.

13. N. Weiner, The Human Use of Human Beings. Methuen, MA:
Riverside Press, 1950.

14. J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control
Theory. New York: Macmillan, 1990.

15. T. R. Hill, “Project Management Using Modern Guidance,
Navigation and Control Theory,” in Proc. IEEE Aerosp. Conf.,
Big Sky, MT, 2011, pp. 1-14.

16. N. Roberts, “Wicked problems and network approaches to
resolution,” Int. Public Manage. Rev., vol. 1, no. 1, pp. 1-19, 2000.

17. H. Rittel and M. Webber, “Dilemmas in a general theory of
planning,” Policy Sci., vol. 4, pp. 155-169, 1973. [Online].
Available: http://www.thestudiony.com/ed/bfa/Rittel+Webber+
Dilemmas.pdf

18. Australian Government ICT Review 2008 (Gershon Review).
[Online]. Available: http://www.finance.gov.au/publications/
ict-review/index.html

19. Australian Government Data Centre Strategy. [Online]. Available:
http://www.finance.gov.au/e-government/infrastructure/
australian-government-data-centre-strategy.html

20. Shed Services, Initiating, Instituting and Implementing the
Australian Government Data Centre Strategy 2010-2025. [Online].
Available: http://agimo.govspace.gov.au/files/2011/03/
Gartner IODC _March 2011 - Shed_Services.pdf

21. Australian Government’s Data Centre as a Service Initiative.
[Online]. Available: http://agimo.govspace.gov.au/2011/10/20/
industry-consultation-data-centre-as-a-service/

Received February 15, 2012; accepted for publication
April 11, 2012

Bernard Robertson-Dunn Nicholls, ACT 2913 Australia
(brd@jiimetro.com.au). Dr. Robertson-Dunn has a B.Eng. degree in
electrical and electronic engineering, an M.Eng. and a Ph.D. degree,
both in control engineering, all from Sheffield University in the United
Kingdom. His Ph.D. thesis was on dynamic modeling of the electrical
activity in the human small intestine. He has undertaken many and
varied modeling assignments including anti-submarine weapons
systems, financial modeling, corporate restructuring, information
systems development, business process engineering, enterprise
architecture, and information and communications technology (ICT)
strategy. Since 1991, he has worked in Canberra, Australia, mainly on
Australian government projects in the areas of defense, health, and a
range of whole-of-government ICT initiatives. His primary focus has
been on problem definition and solution strategies. He spent nearly nine
years with IBM in Canberra in the IBM Government Business Unit
where he achieved IT architect certification. At IBM, he undertook a
range of roles, including enterprise architect and IT architect on several
large Australian government ICT outsourcing projects as well as for a
major Australian Airline. He is currently an independent consultant
working for the Australian Government Information Management
Office on strategies for the adoption of cloud computing. He is a
member of Engineers Australia, the Australian Computer Society, the
Institution of Engineering and Technology (United Kingdom), and the
Institute of Electrical and Electronics Engineers.

B. ROBERTSON-DUNN 10:9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

